Big Data and Areas of Opportunity for the Projection of the Intelligent Transportation System in Bogotá, Colombia
Main Article Content
Abstract
Today, the large cities of Colombia – especially Bogotá, due to the growth of its population (9.3 million with the arrival of immigrants) – demand the projection of intelligent public and private transport systems, as an achievement of the mobility policy of the Bogota Humana administration. Hence, this question arises: What are the challenges and areas of opportunity of adapting Big Data to project an Intelligent Transportation System for all citizens in Bogotá? Based on this question, our aim is to determine the contributions that Big Data offers as a collection center for the projection of an intelligent system for the city. Our research was proposed with a qualitative approach and a descriptive study. The review of some studies developed using Big Data techniques and content data analysis of their organized structure by the District Mobility Secretariat in Bogotá was included. The results allow guiding the contributions of Big Data after analyzing the structure of indicators offered by the data set. From these, we found gaps and voids that are concerning for the Intelligent Transportation System that is expected in the future for Bogotá.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Those authors who publish with this journal agree to the following terms:
The designated authors will retain copyright of all papers and grant the journal the right of first publication of their work, which will be simultaneously published under the Creative Commons Attribution License that allows third parties to share the work, as long as its author is attributed and this journal is identified as the original publisher.
Authors may enter into separate, additional non-exclusive licensing agreements for the distribution of the published work (e.g., post it to an institutional telematic archive or publish it in a monographic volume) as long as this journal is acknowledged as the original publisher.
References
Álvarez, A., & Patiño, A. (2015). Arquitectura empresarial y metodologías ágiles-Una combinación efectiva para hacer frente a los frecuentes cambios en el negocio. Actas de Ingeniería, 1, 145-152. https://es.scribd.com/document/410099179/Articulo-3-Arquitectura-empresarial-y-metodologias-agiles-Una-combinacion-efectiva-para-hacer-frente-a-los-frecuentes-cambios-en-el-negocio-pdf#
Arango-Serna, M. D., Londoño-Salazar, J. E., & Branch-Bedoya, J. W. (2015). Enfoque de arquitectura de solución, mecanismo para reducir la brecha entre la arquitectura empresarial y la implementación de soluciones tecnológicas. Dyna, 82(193), 117-126. http://dx.doi.org/10.15446/dyna.v82n193.46752 DOI: https://doi.org/10.15446/dyna.v82n193.46752
Aristizábal, J. A. (2016). Analítica de datos de aprendizaje (ADA) y gestión educativa. Gestión de la educación, 6(2), 149-168. https://doi.org/10.15517/rge.v1i2.25499 DOI: https://doi.org/10.15517/rge.v1i2.25499
Asadi, R., & Regan, A. (2019). A Spatial-Temporal Decomposition Based Deep Neural Network for Time Series Forecasting. ArXiv, 1(1), 1–17. http://arxiv.org/abs/1902.00636.
Barba González, C. (2018). Big Data Optimization: Algorithmic Framework for Data Analysis Guided by Semantics. [Tesis doctoral Universidad de Málaga]. https://riuma.uma.es/xmlui/handle/10630/17264?show=full
Bbvaapimarket.com. (2020). Reconocer los diferentes tipos te datos, indispensable la era del Big Data. https://bbvaopen4u.com/es/actualidad/reconocer-los-diferentes-tipos-de-datos-indispensable-en-la-era-del-big-data
Cao, T., Matyas, J. J., Renn, C. L., Faden, A. I., Dorsey, S. G., & Wu, J. (2020). Function and mechanisms of truncated BDNF receptor TrkB. T1 in neuropathic pain. Cells, 9(5), 1194. https://doi.org/10.3390/cells9051194 DOI: https://doi.org/10.3390/cells9051194
Cacho-Elizondo, S., & Lázaro Álvarez, J. D. (2018). Transformación digital de los negocios de network marketing, multinivel y ventas directas. El impacto de nuevas herramientas y plataformas digitales. The Anáhuac Journal, 18(2), 13-41. DOI: https://doi.org/10.36105/theanahuacjour.2018v18n2.01
Chagas, A., & Ferraz, C. (2017). Smart Vehicles for Smarter Cities: ContextAware V2X to Improve QoI. Anais Do XXIII Simpósio Brasileiro de Sistemas. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.inf.ufrgs.br/webmedia2017/wp-content/anaiswebmedia/files/wtd/wtd11.pdf
Chen, Y., Lv, Y., Wang, X., Li, L., & Wang, F. Y. (2018). Detecting Traffic Information from Social Media Texts With Deep Learning Approaches. IEEE Transactions on Intelligent Transportation Systems, 1(1), 1–1. https://doi.org/10.1109/TITS.2018.2871269. DOI: https://doi.org/10.1109/TITS.2018.2871269
Cheng, J., Cheng, J., Zhou, M., Liu, F., Gao, S., & Liu, C. (2015). Routing in internet of vehicles: A review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2339–2352. https://doi.org/10.1109/TITS.2015.2423667. DOI: https://doi.org/10.1109/TITS.2015.2423667
Chowdhury, M., Apon, A., & Dey, K. (2017). Data Analytics for Intelligent Transportation Systems. Elsevier. https://www.sciencedirect.com/book/9780128097151/data-analytics-for-intelligent-transportation-systems.
International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 2017, pp. 315-320, https://doi.org/10.1109/CSE-EUC.2017.63
Djahel, S., Jabeur, N., Barrett, R., & Murphy, J. (2015). Toward V2I communication technology-based solution for reducing road traffic congestion in smart cities. International Symposium on Networks, Computers and Communications, ISNCC 2015, 1(1), 6. https://doi.org/10.1109/ISNCC.2015.7238584. DOI: https://doi.org/10.1109/ISNCC.2015.7238584
Hafner, M. R., Cunningham, D., Caminiti, L., & Del Vecchio, D. (2013). Cooperative collision avoidance at intersections: Algorithms and experiments. IEEE Transactions on Intelligent Transportation Systems, 14(3), 1162–1175. https://doi doi.org/10.1109/TITS.2013.2252901. DOI: https://doi.org/10.1109/TITS.2013.2252901
Jin, Y., Li, J., Ma, D., Guo, X., & Yu, H. (2017). A Semi-Automatic Annotation Technology for Traffic Scene Image Labeling Based on Deep Learning Preprocessing. IEEE International Conference on Computational Science and Engineering (CSE) and IEEE DOI: https://doi.org/10.1109/CSE-EUC.2017.63
Kitzmann, N., Romanczuk, P., Wunderling, N., & Donges, J. F. (2022). Detecting contagious spreading of urban innovations on the global city network. European Physical Journal - Special Topics, 231(9), 1609-1624. https://doi.org/10.1140/epjs/s11734-022-00470-4 DOI: https://doi.org/10.1140/epjs/s11734-022-00470-4
Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y. (2015). Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Transactions on Intelligent Transportation. 16(2), 885-873. https://10.1109/TITS.2014.234566
Molina Araque, F. A., & Espitia Pineda, A. A. (2016). Propuesta de diseño e implementación de una aplicación móvil (App) como plataforma para compartir el uso del carro particular (carpooling) entre empleados de las sucursales en Bogotá de la empresa Claro Colombia SA., para teléfonos inteligentes cuyo sistema operativo sea Android 5.1 [tesis de especialización. Universidad Distrital Francisco José de Caldas]. https://repository.udistrital.edu.co/handle/11349/4536
Massobrio, R., Nesmachnow, S., Tchernykh, A., Avetisyan, A., & Radchenko, G. (2018). Towards a Cloud Computing Paradigm for Big Data Analysis in Smart Cities. Programming and Computer Software, 44(3), 181–189. https://doi.org/10.1134/S0361768818030052. DOI: https://doi.org/10.1134/S0361768818030052
Moovit. (2022). Estadísticas de transporte público en Bogotá. https://moovitapp.com/insights/es/Moovit_Insights_%C3%8Dndice_de_Transporte_P%C3%BAblico_Colombia_Bogota-762.
Piguave Peralta, D. (2022). Estudio de factibilidad de una Data Center para el procesamiento de la información en la carrera de Tecnologías de la Información [tesis grado, Universidad Estatal del Sur de Manabí] https://publications.pik-potsdam.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_26817. http://repositorio.unesum.edu.ec/handle/53000/4321
Rincón-García, N., Bamford, D., Mayers, M., Carreño Vargas, J. E., & Roldan Nariño, R. F. (2020). Herramientas de transformación digital para mejorar la planificación urbana mediante el uso de la metodología de caso de negocio de transporte. Revista Espacios, 41(31), 296-304. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.revistaespacios.com/a20v41n31/a20v41n31p24.pdf
Ríos Rodríguez, L. E. (2020). Análisis de datos de sentimientos enfocados al servicio de transporte masivo Transmilenio SA aplicando tecnologías Big Data. http://hdl.handle.net/11371/2907.
Rocha Tamayo, E., & Villarreal Vásquez, C. (2018). Impacto del uso de Big Data en la gestión de movilidad vehicular en el cantón de la libertad [Tesis de grado, Universidad de Guayaquil]. http://repositorio.ug.edu.ec/handle/redug/27297
Rogelez, F. J., Molina Hernández, I., & Marín, A. M. (2013). Sistema de semaforización inteligente en la ciudad de Bogotá para mejorar los tiempos de recorrido del sistema Transmilenio. Traza, 1(7), 10-29. https://ciencia.lasalle.edu.co/tr/vol1/iss7/2/
Secretaría Distrital de Movilidad – SDM. (2019). Encuesta de movilidad en Bogotá. https://observatorio.movilidadbogota.gov.co/encuestas_de_movilidad
Serrano-Cobos, J. (2013). Microsoft Big Data y not so Big Data. Anuario ThinkEPI, 7, 161-163.
Suat-Rojas N. (2021). Extracción y análisis de información de accidentes de tránsito desde redes sociales. http://repositorio.unal.edu.co/handle/unal/80927
Tabares, L. F., & Hernández, J. F. (2014). ISAM. Big Data Analytics: Oportunidades, Retos y Tendencias. Universidad de San Buenaventura. https://gc.scalahed.com/recursos/files/r161r/w25569w/Big%20Data%20Analytics.pdf
Tian, Y., Hu, W., Du, B., Hu, S., Nie, C., & Zhang, C. (2019). IQGA: A Route Selection Method Based on Quantum Genetic Algorithm - Toward Urban Traffic Management Under Big Data Environment. World Wide Web, 22(5), 2129–2151. https://doi.org/10.1007/s11280-018-0594-x. DOI: https://doi.org/10.1007/s11280-018-0594-x
Vásquez Ardila J., M. (20 de julio del 2021.) National Transportation Systems Center. Tránsito de Bogotá tomará decisiones a partir de datos, tecnología e innovación. https://bogota.gov.co/mi-ciudad/movilidad/tecnologia-e-innovacion-nuevo-aliado-del-transito-de-bogota
Vásquez García, D. M. (2015). Diseño de la Arquitectura Empresarial para el Sistema Inteligente de Transporte de Bogotá. Oracle. https://repository.udistrital.edu.co/handle/11349/2378.
Villalobos Fonseca, H. (2020). O desenvolvimento tecnológico em matéria policial: uma receita de sucesso para prevenir o delito. Revista de Relaciones Internacionales, Estrategia y Seguridad, 15(1), 79-97. https://doi.org/10.18359/ries.4243
Wang, S., Djahel, S., Zhang, Z., & McManis, J. (2016). Next Road Rerouting: A Multiagent System for Mitigating Unexpected Urban Traffic Congestion. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2888–2899. https://doi.org/10.1109/TITS.2016.2531425. DOI: https://doi.org/10.1109/TITS.2016.2531425
Wu, Y., & Tan, H. (2016). Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework. School of Mechanical Engineering, Beijing Institute of Technology, 1(1), 1–14.: http://arxiv.org/abs/1612.01022.
Xiao, Z., Ponnambalam, L., Fu, X., & Zhang, W. (2017). Maritime Traffic Probabilistic Forecasting Based on Vessels’ Waterway Patterns and Motion Behaviors. IEEE Transactions on Intelligent Transportation Systems, 18(11), 3122–3134. https://doi.org/10.1109/TITS.2017.2681810. DOI: https://doi.org/10.1109/TITS.2017.2681810
Zanoon, N., Al-Haj, A., & Khwaldeh, S. M. (2017). Cloud Computing and Big Data is there a Relation between the Two: A Study. International Journal of Applied Engineering Research, 12(17), 973–4562. http://www.ripublication.com.
Zhu, M., Chen, W., Xia, J., Ma, Y., Zhang, Y., Luo, Y., Zhaosong, H., & Liu, L. (2019). Location2vec: a situation-aware representation for visual exploration of urban locations. IEEE Transactions On Intelligent Transportation Systems, 20(10), 3981-3990. DOI - 10.1109/TITS.2019.2901117 DOI: https://doi.org/10.1109/TITS.2019.2901117